1. i. Show that the equation $2\sin x = \frac{4\cos x - 1}{\tan x}$ can be expressed in the form

 $6\cos^2 x - \cos x \, 2 = 0.$

[3]

[4]

[3]

[3]

- ii. Hence solve the equation $2\sin x = \frac{4\cos x 1}{\tan x}$, giving all values of *x* between 0° and 360°.
- 2. Solve each of the following equations, for $0^{\circ} \leq x \leq 360^{\circ}$.
 - $\sin\frac{1}{2}x = 0.8$
 - ii. $\sin x = 3 \cos x$
- 3. i. Show that the equation

$$\sin x - \cos x = \frac{6\cos x}{\tan x}$$

can be expressed in the form

$$\tan^2 x - \tan x - 6 = 0.$$

[2]

ii. Hence solve the equation
$$\frac{\sin x - \cos x}{\tan x} = \frac{6 \cos x}{\tan x}$$
 for $0^\circ \le x \le 360^\circ$.

[4]

4.	Trigonometric Identities and Equations In this question you must show detailed reasoning.	
	Solve the equation $2\cos^2 x = 2 - \sin x$ for $0^\circ \le x \le 180^\circ$.	[5]
5.	In this question you must show detailed reasoning.	
	Solve the equation $3\sin^2\theta - 2\cos\theta - 2 = 0$ for $0^\circ \le \theta \le 360^\circ$.	[5]
6.	In this question you must show detailed reasoning.	
	Given that 5sin $2x = 3\cos x$, where $0^{\circ} < x < 90^{\circ}$, find the exact value of sin x.	[4]
7.	In this question you must show detailed reasoning.	
	Solve the equation $\tan 2x = -\sqrt{3}$ for $0^\circ \le x < 360^\circ$.	[5]
8.	The cubic polynomial f(x) is defined by f (x) = $4x^3 + 9x - 5$.	

- The cubic polynomial f(x) is defined by $f(x) = 4x^3 + 9x 5$. Show that (2x - 1) is a factor of f(x) and hence express f(x) as the product of a linear (a)
 - factor and a quadratic factor. [4]
 - (b) (a) Show that the equation

$$4\sin 2\theta \cos 2\theta + \frac{5}{\cos 2\theta} = 13\tan 2\theta$$

can be expressed in the form

$$4\sin^{3}2\theta + 9\sin 2\theta - 5 = 0.$$
 [4]

(b) Hence solve the equation

$$4\sin 2\theta \cos 2\theta + \frac{5}{\cos 2\theta} = 13\tan 2\theta$$

for $0 \le \theta \le 2p$. Give each answer in an exact form.

9. (a) Show that the equation

© OCR 2017.

[4]

Trigonometric Identities and Equations

can be expressed in the form

$$3\cos^2 x + 5\cos x - 2 = 0.$$
 [3]

(b) Hence solve the equation

$$2 \sin 2\theta \tan 2\theta = \cos 2\theta + 5$$
,

giving all values of θ between 0° and 180°, correct to 1 decimal place. [5]

^{10.} (a) Solve the equation
$$\sin^2 \theta = 0.25$$
 for $0^\circ \le \theta < 360^\circ$. [3]

(b) In this question you must show detailed reasoning. Solve the equation $\tan 3\phi = \sqrt{3}_{\text{for } 0^\circ} \le \phi < 90^\circ$. [3]

11. (a) Given that
$$\sqrt{2\sin^2\theta + \cos\theta} = 2\cos\theta$$
, show that $6\cos^2\theta - \cos\theta - 2 = 0$. [2]

(b) In this question you must show detailed reasoning.

Solve the equation

 $6\cos^2\theta - \cos\theta - 2 = 0,$

giving all values of i between 0° and 360° correct to 1 decimal place. [4]

(c) Explain why not all the solutions from part (b) are solutions of the equation

[1]

[3]

$$\sqrt{2\sin^2\theta + \cos\theta} = 2\cos\theta.$$

END OF QUESTION paper

Mark scheme

Questior	Answer/Indicative content	Marks	Part marks and guidance	
1 i	$2\sin x^{\sin x}/_{\cos x} = 4\cos x - 1$ $2\sin^2 x = 4\cos^2 x - \cos x$ $2 - 2\cos^2 x = 4\cos^2 x - \cos x$ $6\cos^2 x - \cos x - 2 = 0 AG$	M1	Use tan $x = \frac{\sin x}{\cos x}$ and rearrange to a form not involving fractions	Must be used and not just stated Must multiply all terms by $\cos x $ so $4\cos^2 x - 1$ is M0, but allow M1 for $\cos x(4\cos x - 1)$ even if subsequent errors
i		M1	Use $\sin^2 x = 1 - \cos^2 x$	Must be used and not just stated Must be used correctly, so M0 for 1 – $2\cos^2 x$ Not dependent on previous M mark, so M0 M1 possible Must be attempting quadratic in cos x so M0 for $\cos^2 x = 1 - \sin^2 x$
				Must be equation ie = 0 Allow poor notation (eg cos not cos <i>x</i> , or $\tan x = \frac{\sin}{\cos(x)}$) as long as final answer is correct Examiner's Comments
i		A1	Obtain $6\cos^2 x - \cos x - 2 = 0$ with no errors seen	Most candidates could quote both of the required identities and then attempt to use them. Whilst $\sin^2 x = 1 - \cos x$ was usually used correctly, the use of $\tan x$ caused more problems as candidates were expected to also deal with the fraction to gain the method mark and a number struggled to do so. Some
				candidates used poor notation, such as omitting the <i>x</i> from their trigonometric ratios, and others spoiled an otherwise

			Trigo	nometric Identities and Equations correct solution by failing to give an equation as their final answer.
ii	$(3\cos x - 2)(2\cos x + 1) = 0$ $\cos x = \frac{2}{3}, \cos x = \frac{-1}{2}$ $x = 48.2^{\circ}, 312^{\circ}, 120^{\circ}, 240^{\circ}$	M1	Attempt to solve quadratic in cos x	This M mark is just for solving a 3 term quadratic (see guidance sheet for acceptable methods) Condone any substitution used, including $x = \cos x$
ii		М1	Attempt to find <i>x</i> from root(s) of quadratic	Attempt \cos^{-1} of at least one of their roots Allow for just stating \cos^{-1} (their root) inc if $ \cos x > 1$ Not dependent so M0 M1 possible If going straight from $\cos x = k$ to $x =$ then award M1 only if their angle is consistent with their k
ii		A1	Obtain at least 2 correct angles	Allow 3sf or better Must come from correct solution of quadratic – ie correct factorisation or correct substitution into formula so A0 if two correct roots from eg (3cos x + 2)(2cos x + 1) = 0 Allow radian equivs – 0.841, 5.44, ${}^{2\pi}\!/_{3}$ or 2.09, ${}^{4\pi}\!/_{3}$ or 4.19
ij		A1	Obtain all 4 correct angles, with no extra in given range	Must now be in degrees SR If no working shown then allow B1 for 2 correct angles (poss in rads) or B2 for 4 correct angles, no extras Examiner's Comments This part of the question was done very well by the majority of the candidates, who were able to identify the fact that

				Trigo	nometric Identities and Equations. The given equation was a quadratic in cosx and attempt an appropriate method to solve it. The four required roots then usually followed, though some candidates struggled to find the secondary angles with 318.2° being a common wrong answer. Others lost marks by discarding the negative root to the quadratic, failing to realise that this would also lead to valid solutions.
		Total	7		
2	i	½x = 53.1°, 126.9°	B1	Obtain 106°, or better	Allow answers in the range [106.2, 106.3] Ignore any other solutions for this mark Must be in degrees, so 1.85 rad is B0
	i	<i>x</i> = 106°, 254°	M1	Attempt correct solution method to find second angle	Could be 2(180° – their 53.1°) or (360° – their 106°) Allow valid method in radians, but M0 for eg (360 – 1.85)
				Obtain 254°, or better	
	i		A1	Examiner's Comments Most candidates were able to correctly find the first angle though a few halved rather than doubled the result of sin ⁻¹ 0.8 . Finding the second angle proved more challenging with the most common error being to simply subtract their first answer from 180°. The fact that this resulted in a second angle that was smaller than the first did not seem to deter them. Whilst some candidates were able to use the symmetry of the $\frac{\sin \frac{1}{2} x}{2}$ graph to find the second angle, the more successful method was to find the possible solutions for $\frac{1}{2} x$ from the sin <i>x</i> graph and then double all the solutions.	Allow answers in the range [253.7°, 254°] A0 if in radians (4.43) A0 if extra incorrect solutions in range SR If no working shown then allow B1 for 106° and B2 for 254° (max B2 if additional incorrect angles)

				Trige	nometric Identities and Equations Allow B1 for correct equation even if no,
	ï	tan <i>x</i> = 3	B1	State tan $x = 3$	Allow B1 for correct equation even if no, or an incorrect, attempt to solve Give BOD on notation eg $\frac{sin}{cos}(x)$ as long as correct equation is seen or implied at some stage
	ii	<i>x</i> = 71.6°, 252°	M1	Attempt to solve $\tan x = k$	Not dep on B1, so could gain M1 for solving eg tan $x = \frac{1}{3}$ Could be implied by a correct solution
				Obtain 71.6° and 252°, or better	A0 if extra incorrect solutions in range Alt method:
				Examiner's Comments	B1 Obtain $10\sin^2 x = 9$ or $10\cos^2 x = 1$ M1 Attempt to solve $\sin^2 x = k$ or $\cos^2 x$
	ii		A1	This part of the question was better attempted, and most candidates scored full marks with ease. A few struggled to find the second angle, or lost the final mark through a lack of precision when rounding. Some candidates made life difficult for themselves by attempting to square both sides and use $\sin^2 x + \cos^2 x \equiv 1$, but this was very rarely done correctly. Potential pitfalls included forgetting to square the coefficient of 3, omitting to use both the positive and negative square roots and finally realising that only two of the four solutions were valid. At least this was a valid method, which could not be said for those candidates who started with $\sin x + \cos x = 1$.	SR If no working shown at all then allow B1 for each correct angles), but allow full credit if tan $x = 3$ seen first
		Total	6		
3	i	$\tan x(\sin x - \cos x) = 6 \cos x$ $\tan x(\frac{\sin x}{\cos x} - 1) = 6$ $\tan x(\tan x - 1) = 6$	M1	Use tan $x = \frac{\sin x}{\cos x}$ correctly once	Must be used clearly at least once – either explicitly or by writing eg 'divide by $\cos x'$ at side of solution Allow M1 for any equiv eg $\sin x = \cos x$ tan x Allow poor notation eg writing just tan rather than tan x
	i	$\tan^2 x - \tan x = 6$ $\tan^2 x - \tan x - 6 = 0 \text{ AG}$	A1	$Obtain \tan^2 x - \tan x - 6 = 0$	Correct equation in given form, including = 0

			Examiner's Comments Trigor A variety of methods were seen for this proof, some more efficient than others. Most candidates did get there in the end, but full credit was only given if the correct notation had been used throughout. Candidates must also ensure that each step is clearly and convincingly detailed when a proof has been requested.	nometric Identities and Equations Correct notation throughout so A0 if eg tan rather than tan <i>x</i> seen in solution
ii	$(\tan x - 3)(\tan x + 2) = 0$ $\tan x = 3$, $\tan x = -2$	М1	Attempt to solve quadratic in tan <i>x</i>	This M mark is just for solving a 3 term quadratic (see guidance sheet for acceptable methods) Condone any substitution used, inc $x =$ tan x
ii	$x = \tan^{-1}(3), x = \tan^{-1}(-2)$	M1	Attempt to solve $\tan x = k at$ least once	Attempt $\tan^{-1}k$ at least once Not dependent on previous mark so MOM1 possible If going straight from $\tan x = k$ to $x =,$ then award M1 only if their angle is consistent with their k
ii	<i>x</i> = 71.6°, 252°, 117°, 297°	A1	Obtain two correct solutions	Allow 3sf or better Must come from a correct method to solve the quadratic (as far as correct factorisation or substitution into formula) Allow radian equivs ie 1.25 / 4.39 / 2.03 / 5.18
			Obtain all 4 correct solutions, and no others in range	Must now all be in degrees Allow 3sf or better
			Examiner's Comments	Allow 351 of better A0 if other incorrect solutions in range $0^{\circ} - 360^{\circ}$ (but ignore any outside this
ii		A1	This question was generally very well done, and many candidates gained full marks on this question. The most common error was to completely discount the solution resulting from tan ⁻¹ (–2) as it resulted in a negative angle rather than appreciating it would still generate other angles within the given range. It was also disappointing to see candidates with a correct method failing to gain full marks due to rounding errors. As in previous questions involving	 SR If no working shown then allow B1 for each correct solution (max of B3 if in radians, or if extra solns in range).

			trigonometry, some candidates did not ensure their calculator was in the correct mode before proceeding. Angles given in radians could gain some credit, but candidates did not actually consider which measure they were using so the typical error was tan ⁻¹ (3) = 1.25 and hence 189.25.
	Total	6	
4	DR $2(1 - \sin^2 x) = 2 - \sin x$ $2\sin^2 x - \sin x = 0$ $\sin x(2\sin x - 1) = 0$ $\sin x = \frac{1}{2} \sin x = 30 \text{ or } x = 150$ $\sin x = 0 \text{ so } x = 0 \text{ or } x = 180$	M1(AO3.1a) A1(AO1.1) M1(AO1.1a) A1(AO1.1) A1(AO1.1) [5]	Use $\cos^2 x = 1 - \sin^2 x$ and simplifyObtain $2\sin^2 x - 1\sin x =$ 0One step of simplification must be seenAttempt to solve a 2 term quadratic in sin x and use correct order of operations to obtain xOne step of simplification must be seenBoth values are requiredUse any valid method Must be seen
	Total	5	
5	DR $3(1 - \cos^2\theta) - 2\cos\theta - 2 = 0$ $3\cos^2\theta + 2\cos\theta - 1 = 0$	M1(AO3.1a) A1(AO1.1) M1(AO1.1a)	Attempt to use $\sin^2 \theta$ = 1 - $\cos^2 \theta$

	$(3\cos\theta - 1)(\cos\theta + 1) = 0$	A1(AO2.2a)	Obtain correct equation	Trig	onometric Identities and Equations
	$\cos\theta = \frac{1}{3}\cos\theta = -1$	A1(AO1.2)	Attempt to solve quadratic	Factorise or BC	
	$\theta = 70.5^{\circ}, 289^{\circ}, 180^{\circ}$	[5]	Obtain at least two correct angles		
			Obtain all 3 angles, and no others		
	Total	5			
	DR 5sin $2x = 3\cos x \Rightarrow 10\sin x \cos x = 3\cos x$	B1(AO 1.1)	Use sin $2x = 2$ sin xcos x to obtain correct identity	SC2 For use of identity followed by cancelling $\cos x$, leading to $\sin x = \frac{3}{10}$.	
6	$\cos x(10\sin x - 3) = 0$ $\cos x \neq 0 \text{ for } 0^{\circ} < x < 90^{\circ}$ $\cos \sin x = \frac{3}{10}$	M1(AO1.1a) E1(AO2.1) A1(AO1.1) [4]	Attempt to factorise	leading to sin 10.	
	Total	4			
7	$DR \\ 2x = -60$	M1(AO1.1) M1(AO2.1)			

		2x = 180 - 60 or $360 - 60$ $x = 60 or 150$ $2x = 120 + 360 or$ $300 + 360$ $x = 60 or 150 or 240$ or 330	OR 2x = 120 OR 2x = 300 2x = 120 or 300 x = 60 or 150 x = 60 + 180 or 150 + 180 x = 60 or 150 or 240 or 330	A1(AO1.1) M1(AO2.1) A1(AO1.1) [5]	$2x = -60 \text{ or } x = -30^{\circ}$ x = -30 + -30 + x = 60 or 1 x = 60 or 1 x = -30 + -30 + -30 + x = -30 + -30 + x = -30 + x = -30 + -30 + 0 + -30 + 0 + -30 + 0 + -30 + 0 + -30 + 0 + -30 + 0 + -30 + 0 + -30 + 0 + -30 +	90 or 2×90 50 3×90 or	one value enough for Trig M1 both both both all four	onometric Identities and Equations
		Total		5				
8	i	f(1/2) = 1/2 + 9/2 - 5 = 0 f(x) = (2x - 1)(2x ² + x + 5)		B1 M1	Confirm f(1/2) = 0, with detail shown Attempt complete division or equiv	B0 for just needed If using divi draw attent remainder Must be div Must be co terms atten must subtra slip) Inspection at least thre cubic	$f_{2} - 5 = 0$ is sufficient $f_{1/2} = 0$ No conclusion sion to justify then must tion to the zero widing by $(2x - 1)$ omplete method - ie all 3 npted Long division - act lower line (allow one - expansion must give ee correct terms of the matching - must be pt at all	

		Triponometric Identities and Equations coeffs of quadratic, considering all relevant terms each time Synthetic division - must be using 0.5 (not - 0.5) and adding within each column (allow one slip); expect to see 0.5 4 0 9 -5 2 1 4 2 10
A1		Allow $4x^2 + 2x + 10$ from dividing by $x - \frac{1}{2}$ Must be written as a product Allow $(x - \frac{1}{2})$ $(4x^2 + 2x + 10)$ ISW any attempt to write as 3 linear factors, or to find roots
A1 [4]		
	Obtain correct quotient	

				Trigonc	ometric Identities and Equations
			Obtain (2 x – 1)(2 x^{2} + x + 5)		
				roduct. Algebraic long division was the es coped well with the lack of a as less common, but was equally licit use of the factor theorem to show	
	$4\sin 2\theta\cos 2\theta + \frac{5}{\cos 2\theta} = \frac{13\sin 2\theta}{\cos 2\theta}$	B1	Use $\tan 2\theta = \frac{\sin 2\theta}{\cos 2\theta}$ or $\tan 2\theta \cos 2\theta = \sin 2\theta$	Must be explicit, and correct notation when used Allow even if errors elsewhere in equation	
ii	(a) $4\sin 2\theta \cos^2 2\theta + 5 = 13\sin 2\theta$ $4\sin 2\theta (1 - \sin^2 2\theta) + 5 = 13\sin 2\theta$	B1	Correct method to remove fraction(s)	Any correct equation seen no longer containing fractions (allow recovery from a slip in notation)	
	$4\sin 2\theta - 4\sin^3 2\theta + 5 = 13\sin 2\theta$	B1	Use $\cos^2 2\theta = 1 - \sin^2 2\theta$	Must be explicit, and correct notation when used Allow even if errors elsewhere in equation	

					Trigo	nometric Identities and Equations
	45	$\sin^3 2\theta + 9\sin 2\theta - 5 = 0$	B1 [4]	Obtain correct equation, from correct working	Must be correct notation throughout Dependent on B1 B1 B1 awarded NB - must annotate answer space	
				Examiner's Comments Candidates were clearly familiar with the mathematical precision required for the common errors were to have the indice coefficient of 2 to disappear. Even if the identity had to be fully correct at the poil Candidates should also appreciate that detailed; in some cases a number of ste of clarity of argument.	marks to be awarded. The most s incorrectly placed and for the se errors were later corrected, the int of use for the mark to be awarded. each step in a proof should be clearly	
		$(2 \sin 2\theta - 1)(2\sin^2 2\theta + \sin 2\theta + 5) = 0$ $\sin 2\theta = \frac{1}{2}$	B1	State that $\sin 2\theta = \frac{1}{2}$ oe	Could just be stated, or implied by later method	
111	(b)	$2\theta = \frac{1}{6}\pi, \ \frac{5}{6}\pi, \frac{13}{6}\pi, \frac{17}{6}\pi$	M1	Attempt to solve $sin2\theta = \pm \frac{1}{2}$ to find at least one root	Correct order of operations ie ½ (sin ⁻¹ ½) Allow M1 if angle(s) found in degrees (15°, 75° etc)	
		$\theta = \frac{1}{12}\pi, \ \frac{5}{12}\pi, \frac{13}{12}\pi, \frac{17}{12}\pi$	A1	Obtain at least 2 correct roots	Must be in radians, and given in an exact form Allow recurring	

	A1 [4]	Obtain 4 correct roots	Trigo decimals, or mixed numbers Must be in radians, and given in an exact form	nometric Identities and Equations
			Allow recurring decimals, or mixed numbers ISW any angles that come from an incorrect quadratic quotient, or an incorrect attempt to find the roots of the quadratic quotient A0 if any extras in range [0, 2p] that are not clearly from their quadratic roots	
		Examiner's Comments		
		Most candidates recognised the link wit	h the previous part of the question and	
		appreciated that they had to solve the c		
		minority did not realise that this was rela factorised in part (i) and made a fresh at		
		attempting the use of the quadratic form	nula on the cubic. Many did recognise	
		the link and attempted to use the root o $\sin\theta$ rather than $\sin2\theta$. Candidates who	f $\frac{1}{2}$, but this was sometimes equated to correctly stated that $\sin 2\theta = \frac{1}{2}$ were	
		usually able to solve the equation to find	-	
		astute candidates giving all 4 roots as th		
		comfortable working with angles in radia only a few instances of angles being giv		
Total	12			

					Тгіли	nometric Identities and Equations
				Uses $\tan x = \sin x / \cos x$		
			M1 (AO 3.1a)			
		$2\sin x \left(\frac{\sin x}{\cos x}\right) = \cos x + 5$		Uses $\sin^2 x = 1 - \cos^2 x$		
		$2\sin^2 x = \cos^2 x + 5\cos x$	M1 (AO 3.1a)			
9	а	$2(1 - \cos^2 x) = \cos^2 x + 5 \cos x$		AG – correct working throughout	Must show sufficient working to justify the	
		$2-2\cos^2 x = \cos^2 x + 5\cos x$	A1 (AO 2.1)		given answer	
		$3\cos^2 x + 5\cos x - 2 = 0$		Examiner's Comments		
			[3]	This question was done well by many. E given, examiners paid close attention to		
				accurate working for the answer mark. If led to error, with $\cos^2 x + 5$ appearing or $2\sin x \cos x \sin x$ on the LHS.		
		$(3\cos 2\theta - 1)(\cos 2\theta + 2) = 0$	M1 (AO 1.1a)	Attempt to solve 3- term quadratic		
	b	$\cos 2\theta = \frac{1}{3} (\operatorname{and} \cos 2\theta = -2)$	A1 (AO 1.1)	$\cos x = \frac{1}{3}$		
		$\theta = \frac{1}{2} \arccos\left(\frac{1}{3}\right)$	M1 (AO 1.1)	Correct order of operation to find one value of θ (or both	(2 <i>θ</i> =)70.52877,	

						nometric Identities and Equations
		$\theta = 35.3^{\circ}$ $\theta = 144.7^{\circ}$	A1 (AO 1.1) A1 (AO 1.1)	values of 2 <i>θ</i> correct) One correct value to the nearest integer or better Cao (35.3 and 144.7)	289.471	nomeurc idenuites and Equations
			[5]		Any additional values in the range loses final A mark if earned	
				Examiner's Comments This part starts with the word 'Hence' a the Specification Document. Most did s producing two angles in the end. To ga given correct to 1 decimal place as requ Some did not grasp the significance of the	tart by solving a quadratic, not always in full credit the two angles had to be uested. 144.8° was not uncommon.	
		Total	8			
10	a	sin θ = 0.5 and –0.5 or sin θ = ± $\sqrt{0.25}$ both θ = 30° and 150°	B1 (AO1.1a) B1 (AO1.1)	"–0.5" may be implied by all 4 answers Ignore other answers for this B1	$\sin \theta = 0.5, \ \theta = 30$ and 210 B0B0B0	
		heta = 210° and 330°	B1 (AO1.1)	NB Correct ans with no wking: B1B1B1	$\sin \theta = \pm 0.5, \ \theta = 30$ and 210 B1B0B0	

			Trigo	nometric Identities and Equations
		[3]	Examiner's Comments	
			Many candidates omitted sin $\theta = -0.5$, usually obtaining 30° but not always 150°. Some of those who included sin $\theta = -0.5$ only gave one of the two other answers. Some candidates found sin ⁻¹ (0.25) = 14.5°. Some of these then found 14.5 ² or $\sqrt{14.5}$	
			Both needed, but ignore other values	
	DR 60° and 240° seen or implied	B1 (AO1.1a)	SC: correct ans with no wking: B0B1B0	
b	20° seen	B1 (AO1.1)	Examiner's Comments	
		B1 (AO1.1) [3]	Most candidates obtained $3\phi = 60^{\circ}$ but not all included $3\phi = 2400$. A few started with $\tan \phi = \frac{\sqrt{3}}{3}$ and hence $\phi = 30$. Some thought that $\tan^{-1}(\sqrt{3}) = 30^{\circ}$. Some gave extraneous answers obtained by, for example, $(180^{\circ} - 60^{\circ}) \div 3$. Others gave answers outside the given	

				domain. Some gave answ	wers in radians.	onometric Identities and Equations
		Total	6			
11	а	$2(1 - \cos^2\theta) + \cos\theta = 4\cos^2\theta$	M1 (AO3.1a)	Correctly removing square root and use of $\sin^2\theta = 1 - \cos^2\theta$ to obtain an equation in cos only		
		$2 - 2\cos^2\theta + \cos\theta = 4\cos^2\theta$ $6\cos^2\theta - \cos\theta - 2 = 0$	A1 (AO2.2a) [2]	AG – sufficient working must be shown to establish given result		
		DR (2 cos θ + 1)(3 cos θ - 2) = 0	M1 (AO1.1)	Correct method for solving quadratic	May use formula or completing the	
	b	$\cos\theta = -\frac{1}{2}$ and $\cos\theta = \frac{2}{3}$	A1 (A01.1) A1 (A01.1)		square	
		$\cos\theta = \frac{2}{3} \Longrightarrow \theta = 48.2, \ 311.8$ $\cos\theta = -\frac{1}{2} \Longrightarrow \theta = 120, \ 240$	M1 (AO2.2a) [4]	Any two correct values All four correct values	48.189, 311.810 And no others	
		E.g. since $\cos\theta \neq -\frac{1}{2}$ n the RHS of the				
	С	$_{\rm equation} \sqrt{2\sin^2\theta + \cos\theta} = 2\cos\theta$	E1 (AO 2.3) [1]			

	Total	7	Trigonometric Identities and Equations